The Dynamics of Collapse in an Authoritarian Regime: China in 1967

Andrew G. Walder and Qinglian Lu
Stanford University

Theories of rebellion and revolution neglect short-run processes within state structures that can undermine their internal cohesion. These processes are evident in the rapid unraveling of the Chinese state early in the Cultural Revolution. Portrayed in past accounts as a culmination of student and worker insurgencies, an early 1967 wave of power seizures was in fact accelerated by an internal rebellion of bureaucrats against their own superiors. These led to the widespread collapse of local governments, diverting the course of the Cultural Revolution and forcing intervention by the armed forces. An event-history analysis of the diffusion of power seizures across a hierarchy of 2,215 government jurisdictions portrays a top-down cascade that spread deeply into rural regions with few students and workers and little popular protest. The internal rebellions were generated endogenously by events during the course of these upheavals, as individual officials reacted to shifting circumstances that threatened their positions.

The unanticipated collapse of durable state socialist dictatorships beginning in the fall of 1989 led to widespread questioning of prevailing theories of revolution, which seemed unable to predict such events or adequately explain them in retrospect (Kuran 1991; Goldstone 1995; Hechter 1995; Tilly

1 The research reported in this article was supported by National Science Foundation grant SES-1021134. Earlier versions were presented at Stanford University, the University of Oxford, and Singapore Management University. We thank Doug McAdam, Susan Olzak, and the AJS reviewers for their comments on earlier drafts and James Kung and Pierre Landry for their assistance with geographical data. Lizhi Liu, Xiaobin He, Weiwei Shen, and especially Fei Yan made important contributions to the preparation of the data set. Direct correspondence to Andrew G. Walder, Department of Sociology, Stanford University, Stanford, California 94305. E-mail: walder@stanford.edu

© 2017 by The University of Chicago. All rights reserved.
0002-9602/2017/12204-0004$10.00

1144 AJS Volume 122 Number 4 (January 2017): 1144–82
One response was renewed attention to threshold and critical mass models of collective behavior, which emphasize the interdependencies of individual decisions that shift propensities to participate (Granovetter 1978; Marwell and Oliver 1993). Applied to protests in these settings, these models explained sudden escalations in protest as a function of information flows (Kuran 1989; Lohmann 1994; Oberschall 1994) or social networks (Opp and Gern 1993; Opp 1994; Pfaff 1996; Pfaff and Kim 2003).

Some of these efforts implicitly treated the collapse of a regime as a function of the scale of protest. State-centered theories of revolution, by contrast, insist that the impact of mass mobilization is highly contingent on the prior existence of structural weaknesses that make regimes vulnerable to mass mobilization from below. Especially important are prior cleavages among ruling elites or organizational weaknesses of the state apparatus (Skocpol 1979; Goodwin and Skocpol 1989; Goldstone 1991; Goodwin 2001). These theories emphasize preexisting structural weaknesses—the organization of state authority, fiscal strain, pressure from the international system, or division among elites. They leave unexamined the internal politics of state structures during the course of the events whose outcomes they seek to explain. Popular challenges are assumed to place pressures on states: strong states are more likely to withstand them, while structurally flawed states are more vulnerable. How and why states unravel remains unexamined and is assumed to follow from initial structural circumstances.

We address this gap by focusing on short-run political processes that unfold within state structures during sustained episodes of contention. The cohesion and resilience of the most structurally sound states can change rapidly due to internal processes analogous to those that generate unexpected escalations in popular protest. Individuals who staff the hierarchies of centralized dictatorships have a large stake in the outcome of political conflict. They are well connected with one another and highly attentive to signals from the top of the hierarchy. They have a more immediate stake in the outcomes of political conflict than ordinary citizens who contemplate whether to engage in protest. In authoritarian hierarchies they face pressures to respond to shifting circumstances. They must decide whether to enforce the directives of their superiors, remain noncommittal, or subtly or openly support the opposition. These decisions are influenced by signals from the top of the hierarchy, and they can shift rapidly. When they do, states without apparent structural weaknesses can unravel with surprising speed.

CHINA’S INSURGENCIES OF 1966–67

The Chinese revolutionary state of the mid-1960s was one of the world’s most disciplined dictatorships, with an organizational capacity that enabled it to mobilize the population and remake the social and economic structures
of the country over the previous decade (Schurmann 1968; Skocpol 1979; Walder 2015, pp. 40–122). At the end of 1966, however, it disintegrated rapidly in the wake of a popular insurgency initiated several months before by its own leader, Mao Zedong. A wave of power seizures in early 1967 overthrew local party committees and governments, ushering in more than a year of factional conflict and civil strife that ended in the imposition of martial law.

It has long been assumed that these power seizures were the culmination of student and worker insurgencies. The popular rebellions have been interpreted variously as a form of charismatic mobilization inspired by faith in Mao’s extraordinary authority (Andreas 2007), as a response by interest groups to seize an opportunity to pursue their aims (Lee 1978), or as expressions of long-suppressed popular frustrations (White 1989). The period seemed to conform closely to models of contentious politics that focus on group capacities to mobilize and shifts in political opportunity (Tilly 1978; Tarrow 1994). The state media encouraged insurgents with authoritative directives. Rebel groups were permitted free travel on the railway system and were allowed to publish their own newspapers. A network of agents actively monitored and directed insurgents behind the scenes. The armed forces and public security agencies were ordered not to interfere (MacFarquhar and Schoenhals 2006; Walder 2009a). Given this marked shift in political opportunity, group capacity to mobilize, the disabling of state repression, and the rapid spread of a popular insurgency, it was natural to assume that the primary agents in this overthrow were insurgent students and workers who challenged the state from below.

Evidence from new sources, however, has revealed two anomalies that cast doubt on this assumption. The first is the extraordinarily rapid and thorough diffusion of power seizures far beyond the major cities that harbored large student and worker insurgencies. They spread much more rapidly and far more widely than one would expect if popular mobilizations were the driving force. The first provincial power seizure was in Shanghai on January 6, 1967; it was praised in the national media on January 12; rebels across China were urged to act in a similar manner by radio broadcasts of an editorial and several related articles in the Communist Party’s official newspaper, People’s Daily, on January 22. By the end of that month, only nine days later, more than half of China’s 2,215 cities and counties experienced power seizures, and by the end of February, more than 70% (Walder 2014). This is a remarkably rapid diffusion across a nation of continental proportions, especially so because the vast majority of these jurisdictions were rural counties with very few students or industrial workers.

The second anomaly is evidence that functionaries in party-state organs—known as “cadres”—actively rebelled against their own superiors and were an important force in power seizures. Published local histories routinely mention rebel organizations in party-state offices as participants in power sei-
zures in large cities, although they provide few details about these rebels. Unusually detailed internal investigation reports for Guangxi province provide such details for the first time. They describe disruptive internal rebellions by state cadres at all levels of the hierarchy that were widespread by December 1966. In large cities and urbanized prefectures, cadre rebels actively coordinated with student and worker rebels. In small towns and rural counties, they routinely seized power from their superiors unilaterally, without coordinating with outside insurgents (Guangxi Party Committee 1987; Walder 2016).

The materials from Guangxi suggest that bureaucrats were paradoxically a driving force in the rapid collapse of the civilian state. Our purpose is to look more systematically at empirical evidence about the nationwide diffusion of power seizures. The evidence indicates that power seizures cascaded downward through the national bureaucratic hierarchy in response to a central directive urging rebels to seize power from local party and state organizations. The consequent collapse of state structures escalated civil disorder, forcing the dispatch of armed troops across most of China and initiating more than a year of violent conflict that ended in martial law.

CENTRALIZED REGIMES AS AUTHORITARIAN HIERARCHIES

The bureaucratic structures of the Chinese state in mid-1966 were a highly unlikely setting for rebellion. The hierarchy shared many of the features that Max Weber attributed to a modern rational-legal bureaucracy—well-defined offices that were not the property of incumbents, careers defined as a progression through ranked posts, written rules about the powers of office, and permanent records about the qualifications and performance of individual bureaucrats. But this bureaucracy, heir to a recent revolution that established a centralized single-party state, had additional features that Weber never observed in his lifetime.

First, the hierarchy was entirely closed: there was no plausible career alternative. After the formation of a state socialist economy in the 1950s there was only one employer, and officials did not have an exit option. They lacked personal assets or business interests that could support a postbureaucratic career. They could not resign to take up employment in a private sector or independent public institutions. They could not initiate a transfer to another location.

A second feature was close monitoring and record keeping, not just of technical performance but also of political dispositions and loyalty to the ruling party. A separate party organization monitored individual behavior and speech in both public meetings and private settings and recorded suspicious actions or statements in permanent files. Almost all government functionaries were members of the Communist Party, subject to party dis-
cipline, and were required to participate in all of the meetings and activities of their party branch.

A third feature is often overlooked. Dictatorships are usually defined as regimes that are harshly punitive toward subject populations, but this type also imposed harsh discipline on its own functionaries. In prior years a series of campaigns targeted officials in periodic purges. These episodes led to the demotion and transfer to menial jobs or labor camps of cadres whose discipline or loyalty fell under suspicion. Survival in such a hierarchy required vigilance by individuals to ensure that they did not end up at the wrong end of a political investigation.

The final feature was the state’s unitary and centralized structure. Unlike loosely organized personal dictatorships or states that contain elements of federalism, all local jurisdictions were directly tied to a single national hierarchy. Two intertwined hierarchies reached from the capital to the grass roots. The central government presided directly over 28 province-level jurisdictions, which in turn presided over a hierarchy of more than 200 prefectures, close to 170 cities, and more than 2,100 rural counties, each of which was directly subordinate to a unit at the immediately higher level (Ministry of Civil Affairs 1998, p. 2210). Paralleling the government hierarchy was a network of party committees whose personnel overlapped with and controlled government agencies at each level. In 1965 there were 2.4 million full-time party and government functionaries in these two hierarchies. Close to 300,000 were full-time party functionaries in 4,400 party committees and related offices. The remaining 2.1 million staffed government offices, and more than 80% of them were party members organized into 117,000 party branches (Organization Department, CCP Central Committee 2000, 16:1331, 1335–40).

In sum, China’s bureaucrats were highly dependent on their positions and had no tolerable exit option; their actions and utterances were closely monitored and could have severely negative consequences; and they were subjected to high demands for obedience and loyalty. Under normal circumstances, one could hardly imagine a less likely group, or a less likely setting, that would breed an insurgency. Yet something changed near the end of 1966 to turn large numbers of cadres from disciplined and compliant functionaries into rebels. As we will see, the centralized and unitary nature of the hierarchy—the features that made it structurally strong—paradoxically made it vulnerable to collapse from within.

THE FORMATION OF INTRABUREAUCRATIC INSURGENCIES

What could have motivated cadre rebels? As the most privileged group in this type of socialist state, they would seem to have strong vested interests
in the preservation of the status quo, leading them to defend their superiors and the integrity of their agencies against outside insurgents. One could apply familiar theories about social movements to the internal politics of a formal organization (Zald and Berger 1978; Goldstone and Useem 1999). This assumes that previously disaffected bureaucrats seized a political opportunity to act. Theories of political contention generally take the prior existence of motivated groups as given: “relative to a particular set of social relations, individuals and groups have articulated interests that are ascertainable prior to the interaction we are seeking to explain” (Tilly 1995a, p. 39). The analysis focuses on the process of mobilization, leaving the formation of interests as an exogenous background assumption, without which the concept of political opportunity would be meaningless (Walder 2009b).

To be sure, China’s state organs contained rivalries and antagonisms common to bureaucratic organizations everywhere. Analysts have long noted tensions between old revolutionaries and party members who joined after the revolution, differences between those who rose through political credentials and educated experts, and the rivalries between cadres with local guerilla and urban underground experience and those who arrived with the People’s Liberation Army in its campaign of military conquest. There were also significant minorities among serving cadres who had been demoted or otherwise sanctioned in prior political campaigns and who may have harbored resentments. Prevailing models of contentious politics would direct us to these preexisting antagonisms as the source of rebellions within the party-state bureaucracy and focus on the opening up of political opportunities to act on these interests.

Narrative accounts from the Guangxi investigation reports demonstrate that the internal rebellions went far beyond previously disaffected cadres and grew through two different processes generated after the onset of the Cultural Revolution. The first is the individuals who were attacked in the first months of the Cultural Revolution, when local officials directed the campaign. This gave the affected cadres an urgent new motive to reverse the damaging verdicts passed upon them and to rebel against superiors who were responsible. Even more consequential, however, was the widespread defection of large groups of cadres who cooperated actively with their superiors in the early phases of the campaign and who vigorously defended them for several months. These cadres moved to the opposition in large numbers and joined in attacks on their superiors after October 1966. The motives for rebellion by these two groups emerged during the course of the Cultural Revolution itself, the cumulative effect of individual responses to shifting circumstances. Narrative accounts suggest that in the end it was the defection of the previously loyal that finally undermined the leaders of local governments (Walder 2016).
What alters the political orientations of cadres in this case is not opportunity but threat, a concept that was prominent in early statements of resource mobilization theory (Tilly 1978, pp. 59–60; Goldstone and Tilly 2001). Unlike these theories, ours emphasizes the impact of threat at the individual rather than the group level. Mobilizations by cadre rebels were not collective responses to defend group privileges; they were the outcome of cumulating individual choices by cadres designed to ensure that they would not personally fall victim in escalating purges. In other words, individual cadres acted to ensure their personal survival at the expense of their superiors and any of their peers who continued to support them.

The threat to individual cadres’ positions was explicit in the overt political rationale for the Cultural Revolution—that certain officials throughout the country preferred moderate Soviet practices and were disloyal to Mao’s revolutionary vision. The campaign potentially threatened cadres throughout the system. Some would lose their positions or worse, but it was initially unclear who would fall, and how many. Purges began in late May 1966 with the attacks on an “antiparty clique” in the nation’s capital (MacFarquhar and Schoenhals 2006). The leaders of provinces, cities, and counties could not claim that there were no “antiparty elements” in their own jurisdictions—this would suggest that they did not accept the campaign’s political rationale, potentially making them targets themselves. Official histories describe party leaders at all levels of government who organized active campaigns of accusation against local “antiparty cliques” in August and September 1966. These local campaigns initially focused on officials in propaganda, culture, and educational departments (Guangxi Party Committee 1987, 1:76–77). Cadres were graded according to their perceived political reliability, with significant minorities classified as suspect (Guangxi Party Committee 1987, 6:319–22, 326–27).

There is one interest that is shared by all individual bureaucrats in this setting and that does not change through time—to avoid losing one’s position. The onset of the Cultural Revolution potentially placed all party-state officials under threat, requiring them to make choices in shifting circumstances to ensure that they did not become victims of the campaign. Some individuals may also have been driven by an ambition to advance themselves or by antagonism toward superiors with whom they had previous conflicts. For these individuals the unfolding campaign may have opened up political opportunities to act on preexisting interests. They may have been among the first movers in attacks on their superiors, responding to signals that made them politically vulnerable. But even those who were so motivated had to ensure, like everyone else, that they did not themselves become victims in the process. And any effective rebellion against their superiors had to mobilize cadres who had no preexisting grievances and indeed even those who for months had actively defended them.
When we claim that political interests shift during the course of this episode of contention, we refer to their interests in either supporting or opposing their superiors. This does not represent, as in prevailing models of contentious politics, a choice to act on preexisting motives. Instead, it represents a choice between political alternatives—to defend one’s superiors or to support a rebellion against them. What shifts over time is individual cadres’ perception that they would be more likely to preserve their position and avoid falling in the campaign if they sought to overthrow their superiors rather than actively support them or remain uncommitted. This is a choice faced by all cadres as the Cultural Revolution unfolded in the last weeks of 1966. So long as their superiors appeared to have the backing of higher-level organs, there was widespread support for them. After student insurgencies formed in August and September, party leaders mobilized cadre groups known as Scarlet Guards. They were in fact loyal to their superiors and aimed to deter invasions of government offices by students or workers and defend their superiors against attacks (Guangxi Party Committee 1987, 1:454–57; 3:117–18; 6:325–26; 13:209, 370–71, 506–7). After signals from the top of the national hierarchy in October 1966 made it increasingly evident that local leaders were vulnerable to attack for their actions in previous months, previously loyal cadres—including those who had actively defended the local leaders—began to turn on them in large numbers. To defend a superior who falls from power for an alleged political transgression was to risk censure and punishment by association, potentially making one complicit in one’s superior’s actions.

The cadre rebellions emerged shortly after a large Beijing Party conference held in October 1966, which assembled officials from throughout the country to hear denunciations of the recent behavior of regional and local leaders. Party-led purges and especially the loyal militant groups like the Scarlet Guards were denounced as a “bourgeois reactionary line” that sought to blunt the Cultural Revolution in defiance of Mao’s intentions. The new political line was rapidly communicated throughout the country. Local leaders could no longer control the process of accusation and purge. They were now vulnerable to criticism for their recent actions, which in almost every instance appeared to be a manifestation of the bourgeois reactionary line. Retaliation against accusers would only make them more vulnerable.

Whether they had joined the Scarlet Guards or simply complied actively with campaigns against victims targeted in the initial purges, individual cadres were forced to reassess their positions. Detailed accounts from Guangxi describe a rapid shift within party-state organs during November 1966. Scarlet Guards quickly disbanded, and some simply recast themselves as rebel groups that targeted their superiors, claiming that they were deceived by their reactionary schemes. Other cadres formed new rebel organizations and challenged their superiors. In one county, by the end of November 520 out of 883
cadres had formed more than 50 rebel “fighting groups” in 29 departments in the county offices. In another, 22 different rebel groups formed within the county headquarters (Guangxi Party Committee 1987, 2:234; 6:328).

Pressures to join the opposition mounted in December as large popular insurgencies formed in provincial capitals and other major cities. As the rebellions of students and workers grew and received the approval of the official mass media, government employees faced the prospect that their failure to join in the rebellion might be interpreted as complicity in a “reactionary” line. In December 1966 the leaders of cities and counties began to lose control over their subordinates. Rebel cadres disrupted party meetings and seized control of the agenda, forcing their superiors to respond to charges about their alleged misdeeds (Walder 2016).

THE DYNAMICS OF COLLAPSE

The collapse of civilian state structures—and the end point of our analysis—was marked by the declaration of a “power seizure” over an entire city or county government. Large popular insurgencies in several major cities had turned streets and city squares into battlegrounds between competing factions. Provincial governments were paralyzed by challenges from militant students and workers and by internal challenges among their own staff. If the Cultural Revolution was to do more to destroy civil order, the spreading chaos needed to be curbed. The solution was a new tactic: a “power seizure” by rebels who would claim victory in Mao’s name, permitting the imposition of order, through repression by the armed forces if necessary. The Shanghai power seizure on January 6, which quickly stabilized China’s largest city, provided a template for this maneuver. It was showered with praise as a victory for pro-Mao rebels. Power seizures in large cities were intended to stabilize a rapidly deteriorating situation (Dong and Walder 2010; Walder 2015, pp. 233–42). The result, however, was in most instances the opposite: a subsequent call for similar power seizures accelerated the collapse of local governments far beyond large cities, into rural jurisdictions that were not yet disrupted by popular insurgencies.

The call for rebels to seize power led to an unanticipated wave of internal power seizures by cadres. In large cities rebel cadres joined large coalitions of rebel forces that included workers and students. In smaller cities and especially in rural counties, rebel cadres directed the entire process, in many cases seizing power unilaterally without the participation of workers or students (Walder 2016). Power seizures were hastily organized: at the highest levels in response to the January 22 call for rebels to seize power and at lower levels in response to news of power seizures at the next higher level of administration. The leaders of various small rebel groups in government offices formed coalitions known as “power seizure committees” and prepared for a formal
declaration. The power transfer typically involved a mass meeting that local leaders were forced to attend, the signing of a power transfer agreement, and a formal declaration of the overthrow of party secretaries, heads of the local government, and all or most of their deputies. The transfer of power was declared locally via handbills, radio or loudspeaker systems, and local newspapers. The overthrown leaders were typically taken into custody and frequently subjected to violent and humiliating public “struggle sessions” (Walder 2016).

The timing of a power seizure was heavily influenced by a power seizure in the immediately higher government jurisdiction. This event spurred rebel cadres to act in order to ensure that rival rebels or outside actors did not seize power before they did. This motivation is explicitly and repeatedly mentioned in detailed investigation reports compiled for Guangxi Province (Guangxi Party Committee 1987, 1:77–78, 456–57, 514–18; 2:193–94; 3:339–40, 514–16; 4:169–71, 333–35, 492–96; 6:330–33; 13:309). By seizing power rebel cadres were also signaling to the rebels who had seized power in the hierarchy above them that they shared the same political orientation.

THE DIFFUSION OF POWER SEIZURES

The wave of power seizures in early 1967 suggests a dynamic process similar to threshold models of collective behavior. Dynamic models of social action view the decisions of actors as interdependent—they are influenced by choices reflected in the prior actions of relevant others (Gould 1993; Heckathorn 1993; Kim and Bearman 1997). Threshold and critical mass theories emphasize the interdependencies of individual choices that shift group behavior (Granovetter 1978; Marwell and Oliver 1993). These ideas also motivate diffusion models of political events. The rate at which strikes, riots, or protests spread across time and space is not affected solely by fixed structural features indicating group motives or capacity to act. There is a dynamic temporal dimension that indicates mutual influence. A period of heightened protest activity emerges through “imitation, comparison, the transfer of forms and themes of protest from one sector to another” (Tarrow 1989, p. 223) and a wavelike pattern in which the influence of prior actions by others eventually diminishes over time (Pitcher, Hamblin, and Miller 1978; Tarrow 1994; Conell and Cohn 1995; Myers 1997; Biggs 2005).

Diffusion models are fundamentally about flows of information. Actors can be influenced by the actions of others only if they learn of them. Most models are concerned with two different ways that information spreads. One is via face-to-face communication through local or distant social networks or social movement organizations (Gould 1991; Hedström 1994; Tornay, Deane, and Beck 1996; Myers 1997; Soule 1997; Hedström, Sandell, and Stern 2000; McVeigh, Myers, and Sikkink 2004; Andrews and Biggs 2006; Cunningham and Phillips 2007; Kim and Pfaff 2012; Wang and Soule
American Journal of Sociology

2012). A second is through unconnected actors who learn of the actions of relevant others through the mass media (Myers 2000; Andrews and Biggs 2006). These two mechanisms are referred to as relational versus nonrelational channels of influence (Soule 1997).

A second issue is how actors evaluate the information they receive and how and why they act on it. For some analysts, the prior occurrence of an event signals the vulnerability of authorities to a challenge and the likelihood that a similar challenge of their own might be successful (Tarrow 1994; Conell and Cohn 1995). For others it is information about effective techniques of organization or strategies of protest (McAdam 1983; Minkoff 1997; Soule 1997; Andrews and Biggs 2006; Traugott 2010; Wang and Soule 2012).

Our puzzle is primarily the second—how actors evaluate information and choose to act. China’s cadres were tightly integrated into a centralized hierarchy, and all local units were exposed to the same media and flows of documents. Local media replicated editorial content formulated in Beijing. In such a setting the way that information is transmitted is of secondary interest. The real puzzle is what prompted rebel cadres to act and why the diffusion of power seizures was so remarkably rapid. Central to our explanation is that cadres felt compelled to seize power and control their own fate in uncertain and threatening circumstances.

EMPIRICAL IMPLICATIONS

Our claims have implications that can be tested more systematically with data from the entire range of national jurisdictions. The first implication is about the speed and extent of diffusion. Because intrabureaucratic insurgencies were widespread by the end of 1966, we expect power seizures to spread rapidly and very widely after the national call for rebels to seize power on January 22, 1967. Because we claim that cadres were the primary agents of power seizures in rural counties, they should diffuse widely into rural jurisdictions with few students and workers and where there was little evidence of prior popular insurgencies.

A second implication is that the power seizures radiated downward through the national political hierarchy—not randomly across localities and not from lower jurisdictions to higher ones. Our analysis implies that cadres had increasingly strong incentives to rebel against their superiors by the end of 1966, independently of the strength of local popular insurgencies. Power seizures at higher levels of administration pressured cadre rebels at immediately lower levels to follow suit. There should be clear evidence that lower-level jurisdictions experienced power seizures after higher levels and, more important, that the act was triggered by a power seizure at the immediately higher level in the bureaucratic hierarchy. A tightly
coordinated downward pattern within the hierarchy is indirect evidence that cadres were the primary actors in lower-ranking jurisdictions. If power seizures were the product of popular insurgencies, we would expect a slower and more random, if not bottom-up pattern, as power seizures occurred according to the variable strength of local insurgencies.

Diffusion models typically invoke influences that involve imitation of other relevant actors, in contrast to the top-down threat-driven processes that are central to our explanation. In this case, this would mean that local cadres may have been spurred to seize power by prior power seizures in nearby government jurisdictions of parallel rank. Power seizures by other actors in a locality might have created pressures similar to those created by power seizures at a higher level—the desire not to be left behind—or they may have provided a successful example to emulate. Our argument does not rule out such “horizontal” influences, but we expect the top-down mechanisms to dominate after January 22.

DATA AND MEASURES
To test the implications of our theory, we employ data about events in 2,215 county and city jurisdictions. The database was created by coding information from annals published by local governments, along with background data from these and other sources. It contains more than 99% of all county and city jurisdictions in 1967, excluding Tibet, which is not included in the database. Based entirely on local accounts, these data do not suffer from the regional biases in coverage by newspapers located in major media centers (McCarthy, McPhail, and Smith 1996; Earl et al. 2004; Myers and Caniglia 2004).

The event of interest is a local power seizure, defined as a formal declaration by an insurgent group that they have occupied the party and government headquarters, deposed local party committees and government leaders, and assumed political control over the entire jurisdiction. Published local histories vary greatly in the level of detail that they devote to describing events during these years, but power seizures were major turning points and are among the events most likely to be recorded.

Under the coding rules, only a power seizure over the entire jurisdiction qualifies. Seizures of radio stations, newspapers, public security bureaus, or other agencies do not. To ensure conformity to this definition, two teams of coders recorded the date separately for every jurisdiction. Entries that did not match were reconciled by reexamining original sources. In all, 82% of jurisdictions reported power seizures: 50% reported a specific date and 32% the month. The remaining 18% did not describe a power seizure that fit our definition. While it is possible that some of these accounts simply failed to report seizures, or to report them in sufficient detail, we assume in these cases that a power seizure did not occur.
To track the diffusion of power seizures across cities and counties, which are the units of analysis, each jurisdiction is coded according to its administrative level. At the highest level of the hierarchy are 27 province-level governments, for which we have coded the day that 25 power seizures occurred. At the next lower level are 83 prefecture-level cities (including all provincial capitals). Below this level are 90 county-level cities and 2,042 largely rural counties.

For each jurisdiction, we coded background data for the years immediately before 1967. From local annals, statistical yearbooks, and tabulations from the 1964 census, we recorded values for total population, urban population, the total number of nonagricultural “workers and staff,” and the number of “cadres” We recorded the dates of reported power seizures in an intermediate level of administration between the province and county level—the prefecture. We also recorded the dates of reported events that indicated insurgent activity and any reported data that indicated the impact of these events.

DESCRIPTIVE ANALYSIS

Table 1 describes the features of jurisdictions. Cities are vastly more urbanized than counties, and the students and workers who fueled the insurrections of late 1966 were concentrated there. Less than 9% of county populations lived in urban areas; the rest lived on collective farms. The counties had far fewer nonagricultural workers, and cadres comprised a larger proportion of the salaried workforce, averaging roughly half the number of workers. As the ratio of cadres to workers rises, they became more influential as political actors.

The rapid diffusion of power seizures is evident in the descriptive statistics displayed in table 2. The data in the various columns indicate a top-down pattern. The higher-level jurisdictions were more likely to experience power seizures, and they did so earlier, although more than three-fourths of all counties experienced power seizures by the end of March. Very small percentages of cities and counties had power seizures before their provincial government.

2 Beijing and Shanghai were equal in rank to provinces. We treat their urban districts as prefecture-level cities and the counties within their boundaries as subordinate units. Tianjin obtained provincial status in 1968, but in early 1967 it was a county-level city and the seat of Tianjin prefecture within Hebei province.

3 “Workers and staff” were salaried employees paid on a national scale for production workers and service personnel. “Cadres” were salaried employees paid on the national civil service scale, which includes political officials and office staff.

4 Prefectures are not a unit of analysis. Dates for prefecture-level events are included in the database as variables tied to cities and counties.
Given the small worker and student populations in counties, one would expect much smaller and less threatening popular insurgencies than in cities. Event data on insurgent activities bear this out (table 3). Popular insurgencies developed much more slowly in counties. By the end of August 1966 close to 90% of cities reported the activities of student red guards, but fewer than 60% of counties reported the same. Attacks by insurgent students or workers on local government agencies (not including power seizures) were reported in 42.2% of cities by January 1967 but only 18.3% of counties. The most relevant indicator is the percentage of jurisdictions that reported invasions of government offices by outside insurgent groups. There were seven times more office invasions in cities than in counties. The most telling statistic is the fact that only 8.2% of counties reported such office invasions by the end of February, by which point almost 70% of counties already had power seizures. This strongly suggests that cadres, not outside insurgents, were the driving force in county-level rebellions.

Despite limited popular insurgencies in counties, their governments were destabilized almost as rapidly as cities. By the end of January 1967, 50.3% of cities reported that local governments were “paralyzed” and unable to function, only marginally higher than the 41.1% of counties. Some 85.5% of cities had power seizures by the end of February, but close to 70% of counties did. County governments appear to have been destabilized almost as quickly as cities, despite the modest scale of popular insurgencies.

Another striking feature of this pattern is that the diffusion of power seizures is only modestly affected by geographic distance. This is consistent with known patterns of communication within the Chinese bureaucracy at that time. A directive from Beijing issued 11 days earlier ordered local radio stations to discontinue local programming and to relay central programs without alteration (Central Committee 1967). The January 22 call for rebels to seize power was broadcast by radio in all jurisdictions, although copies

TABLE 1

DEMOGRAPHIC CHARACTERISTICS OF CHINESE JURISDICTIONS, 1966

<table>
<thead>
<tr>
<th>Jurisdiction Level</th>
<th>Average Population</th>
<th>Average Urban Population</th>
<th>Average % Urban</th>
<th>Average Number Cadres</th>
<th>Average Number Workers</th>
<th>Average Ratio Cadres/Workers</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefecture-level city</td>
<td>853,925</td>
<td>636,874</td>
<td>70.2</td>
<td>27,445</td>
<td>235,902</td>
<td>.12</td>
<td>83</td>
</tr>
<tr>
<td>County-level city</td>
<td>287,494</td>
<td>169,422</td>
<td>61.8</td>
<td>5,693</td>
<td>53,951</td>
<td>.15</td>
<td>90</td>
</tr>
<tr>
<td>County</td>
<td>311,123</td>
<td>22,767</td>
<td>8.6</td>
<td>1,781</td>
<td>6,489</td>
<td>.48</td>
<td>2,042</td>
</tr>
<tr>
<td>Valid N</td>
<td>2,214</td>
<td>2,212</td>
<td>2,212</td>
<td>2,058</td>
<td>2,136</td>
<td>1,999</td>
<td></td>
</tr>
</tbody>
</table>

NOTE.—Data are from the county-city database.
<table>
<thead>
<tr>
<th>Level</th>
<th>By End of January (%)</th>
<th>By End of February (%)</th>
<th>By End of March (%)</th>
<th>Median Date*</th>
<th>Average Days after Province*†</th>
<th>Before Province*† (%)</th>
<th>No Confirmed Power Seizure (%)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Province</td>
<td>86.1</td>
<td>89.3</td>
<td>89.3</td>
<td>January 23</td>
<td>...</td>
<td>...</td>
<td>7.4</td>
<td>27</td>
</tr>
<tr>
<td>Prefecture-level city</td>
<td>74.7</td>
<td>90.4</td>
<td>91.6</td>
<td>January 25</td>
<td>2.3</td>
<td>16.9</td>
<td>8.4</td>
<td>83</td>
</tr>
<tr>
<td>County-level city</td>
<td>66.7</td>
<td>81.1</td>
<td>84.4</td>
<td>January 25</td>
<td>11.9</td>
<td>8.9</td>
<td>13.3</td>
<td>90</td>
</tr>
<tr>
<td>County</td>
<td>47.3</td>
<td>69.0</td>
<td>77.1</td>
<td>January 28</td>
<td>20.8</td>
<td>6.4</td>
<td>18.7</td>
<td>2,042</td>
</tr>
</tbody>
</table>

Note.—Tibet is not included in the database or in these tabulations. Data are from the county-city database.

* The 1,106 cases for which the exact date of a power seizure is known.

† Cases in the 25 provinces that experienced power seizures.
of the Communist Party’s national newspaper, People’s Daily, may have arrived some days later.

More directly relevant is how cadres in rural counties learned of power seizures at the higher level of government. By the late 1950s all county governments were connected to prefectures by telephone and telegraph, and cadres routinely attended a variety of meetings at higher levels of administration (Oksenberg 1974). Narrative accounts from Guangxi describe county cadres who personally observed power seizures at the prefecture and who immediately telephoned their colleagues back in the county to inform them of the event. In other accounts, they rush back to their counties in order to prepare for their own power seizures (Guangxi Party Committee 1987, 3:514–18; 4:492–94).

With information from geographic databases, we recorded the distance between each jurisdiction and the location of the next higher level of government (table 4). For county-level units, this was the prefecture capital; for prefecture-level units, this was the provincial capital. Table 4 makes clear that distance had only a modest impact. Despite wide variation in distances, the overall percentage that experienced power seizures in each quin-

<table>
<thead>
<tr>
<th>TABLE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDICATORS OF INSURGENT ACTIVITY, LATE 1966–EARLY 1967, BY JURISDICTION TYPE (%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cities</td>
<td>89.0</td>
<td>42.2</td>
<td>60.1</td>
<td>58.3</td>
<td>50.3</td>
<td>85.5</td>
</tr>
<tr>
<td>Counties</td>
<td>59.5</td>
<td>18.3</td>
<td>25.1</td>
<td>8.2</td>
<td>41.1</td>
<td>69.1</td>
</tr>
</tbody>
</table>

Note.—Data are from the county-city database.

<table>
<thead>
<tr>
<th>TABLE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREVALENCE AND TIMING OF POWER SEIZURES, BY DISTANCE FROM SUPERIOR JURISDICTION</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quintile (by Distance)</th>
<th>Average Distance from Superior Jurisdiction (Miles)</th>
<th>Percentage with Reported Power Seizures</th>
<th>Median Date of Reported Power Seizures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.3</td>
<td>82.8</td>
<td>January 27</td>
</tr>
<tr>
<td>2</td>
<td>28.3</td>
<td>84.2</td>
<td>January 28</td>
</tr>
<tr>
<td>3</td>
<td>41.8</td>
<td>82.8</td>
<td>January 29</td>
</tr>
<tr>
<td>4</td>
<td>58.4</td>
<td>80.6</td>
<td>January 29</td>
</tr>
<tr>
<td>5</td>
<td>112.1</td>
<td>78.9</td>
<td>January 29</td>
</tr>
<tr>
<td>Total</td>
<td>50.0</td>
<td>81.9</td>
<td>January 28</td>
</tr>
</tbody>
</table>
tile is almost identical. Jurisdictions in the least distant quintiles experienced somewhat earlier power seizures, while those in the most distant quintile were slightly less likely to experience one.

We have argued that January 22 was the starting point of a downward cascade of power seizures. This signaled to cadre rebels that they were at risk if they failed to join with student and worker insurgencies or if they failed to act unilaterally. The event data suggest a marked shift in the pattern of power seizures that began on that date. Before January 22 the power seizures do not conform to a top-down pattern: the majority of power seizures occur before power seizures at higher levels of administration. In the subset of 1,106 cases in which the exact dates are known, 63% of city and county power seizures before January 22 occurred before a power seizure over the province, 67% of prefecture power seizures occurred before the province seizure, and 47% of county power seizures occurred before the prefecture seizure. After January 22 the pattern is reversed: only 15% of counties and 17% of prefectures seized power before their province, and only 18% of counties before their prefecture. The shift to a top-down pattern, and the accelerating pace of power seizures, indicates the role of cadre rebels in consummating power seizures across the lower reaches of the party-state hierarchy.

This pattern is visually displayed by the maps in figure 1, which portray the diffusion of power seizures as a network phenomenon. Jurisdictions are differentiated by node sizes: the largest nodes are provincial capitals, medium-sized nodes are prefecture-level jurisdictions, and small nodes are the county level. Jurisdictions that have experienced power seizures appear on the maps as filled circles, and edges represent the relationship between power seizures at higher and lower levels. When a prefecture or province power seizure precedes a subsequent power seizure in a jurisdiction below it, a line connects the two jurisdictions, indicating a top-down process. If a power seizure occurs at the lower-level jurisdiction before or without one at the higher level, there is no line to connect them. The density of circles and lines reflects the intensification of the top-down pattern over time.

On January 21, one day before the national call for power seizures (fig. 1A), the pattern of power seizures appears to be entirely random, with roughly equal numbers of provincial capitals, prefectures, and counties across regions. There are almost no lines connecting jurisdictions. One week later, however, we see an explosion of power seizures (fig. 1B). By this point almost all provincial capitals appear on the map along with large numbers of prefectures. In addition, we see numerous lines connecting jurisdictions, indicating a more prominent top-down pattern. As more counties experience power seizures, the density of nodes and lines becomes more pronounced, as seen in figure 1C

5 Tibet is shaded gray to indicate that it is not included in the data set.
(February 18). By March 31 (fig. 1D), the density of nodes and lines approaches its maximum, by which point close to 80% of all jurisdictions have reported a power seizure.

Figure 2 portrays the same process in greater detail for Guangxi province. On January 23, one day after the call for power seizures nationwide, there were simultaneous power seizures over the provincial government and the government of the capital city (Nanning). One prefecture experienced a power seizure on the same day. By January 26, only three days later,
all 12 prefectures and prefecture-level cities had experienced a power seizure, along with 19 counties. By January 31, the power seizures had spread to all but 17 of the 82 counties and county-level cities. Only seven county-level jurisdictions had yet to experience a power seizure by the end of February; two of these would have power seizures in early March, and five would not have one. Guangxi closely followed a top-down pattern, as power seizures spread from higher- to lower-level jurisdictions in a rapid and complete manner. There were simultaneous power seizures in different levels of
the hierarchy on eight occasions, but in no case was there a power seizure in a lower-level jurisdiction before one at the immediately higher level.

EVENT-HISTORY MODELS

Event-history models are widely applied to protest waves because they permit analysts to estimate the impact of structural variables and prior events in other units of observation (Strang and Tuma 1993; Strang and Soule 1998). The fact that we know only the month of a power seizure in 32% of the cases, however, presents a problem for the estimation of event-history models. To employ the month as the time unit would discard valuable information about the 1,106 cases in which the date of the power seizure is known and would fail to capture the time dynamics of such rapid diffusion. To drop cases in which only the month is known would bias the results by excluding a large block of cases in which power seizures did occur.

To recapture all known power seizures for event-history analysis, we impute dates for jurisdictions on the basis of clustering in prefectures—the intermediate level of administration between the province- and county-level
units. There are 252 prefecture-level units in the database, each of which contains an average of close to nine county-level jurisdictions. The dates of power seizures cluster within prefectures, which suggests the following imputation strategy. First, we impute the missing date as the mean date of power seizures for a given month within the same prefecture. This step resolves 72% of the missing dates (513 out of 709 cases) and leaves 196 cases in which a prefecture’s mean date cannot be determined for a given month. Of these cases, 177 are imputed with the provincial mean date for that month. A final 19 cases are imputed with the monthly mean date for the entire sample. The distribution of dates in the imputed sample is almost identical to the distribution of dates before imputation.

The risk set is defined as all counties, county-level cities, and prefecture-level cities. Jurisdictions enter the risk set with the first power seizure on December 24, 1966, and drop out when they experience a power seizure. Repeated events and right-hand censoring are not an issue. Each locality can only experience one power seizure (the first). The last recorded power seizure was January 14, 1968, the end point of the time clock.

We conduct a nonparametric analysis to observe empirical patterns—the survival function, hazard rate, and cumulative hazard rate—before selecting a parametric model whose assumptions are not violated by the data. The survival function is a monotonically decreasing function over time, given by

\[S(t) = P(T > t) \]

which expresses the probability of not experiencing an event up to a given time \(t \). Kaplan-Meier survival estimates are displayed in figure 3 (top), which shows that almost all power seizures occurred in the first 90 days of 1967. Lower-level jurisdictions (counties and county-level cities) have higher survival rates than prefecture-level cities, meaning that lower-level jurisdictions generally experienced power seizure events later in time. A log-rank test confirms that the survival functions are indeed different for these three types of jurisdictions \(\chi^2_{k=2} = 64.83, P < .001 \).

Next we examine the hazard rate and cumulative hazard rate. The hazard rate is the instantaneous rate of failure given by

\[\lambda(t) = \lim_{dt \to 0} \frac{P \left(t < T \leq t + dt | T > t \right)}{dt} = \frac{f(t)}{S(t)}, \]

and it has an inverse U-shaped pattern that first increases and then decreases after 50 days. A closer look at the hazard rate across jurisdictions (fig. 3, bottom) reveals that higher-level jurisdictions (prefectures and

6 The mean difference between the dates of prefecture- and county-level power seizures is 12.1 days, and the median is three days. The dispersion within provinces is much larger: the mean difference between province and county power seizure dates is 20.3 days, and the median is seven days.

7 A more conservative approach of imputation based solely on prefecture dates leaves 196 missing cases. This approach did not alter the findings reported below (table 5).
county-level cities) are at greater risk of experiencing a power seizure earlier in time, whereas lower-level jurisdictions (counties) are at lower risk and experience them later. This pattern is consistent with the survival function across jurisdiction levels (fig. 3, top).

The cumulative hazard rate is the integral of the hazard rate, given by \(A(t) = \int_0^t \lambda(u) \, du \), and provides information about time dependence of the hazard. Given the pattern of the hazard rate, the cumulative hazard rate is S-shaped, which means that the hazard first increases and then decreases over time.
There are a variety of event-history models that make different assumptions about time dependence in the hazard rate. After conducting a series of tests (described in the appendix), we selected the log-logistic model for our survival analysis. The log-logistic distributions are appropriate for data with nonmonotonic hazard rates, specifically those that first increase and then decrease, such as the hazard rate observed in our nonparametric analysis. Its survivor and density functions are expressed as

\[
S(t) = \frac{1}{1 + (\lambda t)^{1/\gamma}}, \\
f(t) = \frac{\lambda (\lambda t)^{1/\gamma - 1}}{\gamma[1 + (\lambda t)^{1/\gamma}]^2},
\]

where \(\lambda_j = \exp(-x_j\beta) \) and the scale parameter \(\gamma \) is estimated from the sample.

MODEL SPECIFICATION

We specify models designed to test the top-down process of diffusion that we attribute to mobilizations by cadres against their own superiors. We expect that counties experience power seizures later than cities—already clear from our descriptive analysis. We also expect the process to accelerate after January 22—a clear signal to cadres that such an action was sanctioned. There are two crucial ideas about top-down diffusion that are not convincingly demonstrated by the descriptive analysis. The first is the claim that power seizures were triggered by a power seizure at the immediately higher level of administration. The second is that power seizures were triggered by information that other governments in the same locality had experienced one. We do not have strong prior expectations about the latter, but we do expect that top-down diffusion was initiated on January 22.

We estimate a series of nested models that introduce conceptually distinct blocks of variables. The first block includes provincial fixed effects and establishes a baseline for evaluating model fit. Political events unfolded differently across provinces. The first province-level power seizure occurred on January 6 and the last on February 5. Two provinces did not experience a power seizure. To account for different political dynamics across provinces and for other dimensions of unmeasured heterogeneity, we include provincial fixed effects in all models.

The next model block introduces three characteristics of jurisdictions. The first is the percentage of the population living in urban areas, which captures the contrast between cities and counties. We expect more urbanized jurisdictions to experience earlier power seizures than more rural ones.
because the level of urbanization is a proxy for administrative level and because larger urban populations could support larger popular insurgencies. A second characteristic is the ratio of cadres to workers. One of the politically significant features of rural counties is that cadres are more dominant in the urban workforce and are expected to be the primary force in power seizures there. Overall, we would expect that a high cadre/worker ratio is associated with later power seizures because power seizures diffuse from the top down. However, once we take into account the vertical diffusion pressures central to our argument, we would expect this variable to have no net effect. This would indicate that cadre-dominant counties are just as vulnerable to power seizures as jurisdictions with large worker populations. If, however, cadres were less likely to seize power where there were few workers to fuel a popular insurgency, the variable should have a net negative impact. The third characteristic is a jurisdiction’s distance from the next higher level in the hierarchy, as defined in table 4. Because of the rapid vertical flows of information through the mass media, telephone, and frequent cadre attendance at higher-level meetings, we expect distance to have at most a modest impact on the timing of power seizures and no net impact when top-down processes are taken into account.

The next block of variables contains the crucial tests of our theory. The first is a dummy variable indicating the period beginning January 22. In this model the variable gauges the acceleration of diffusion beginning on that day; later in the form of interaction terms it will be used to test for a shift to a top-down process of diffusion. Two other variables directly measure the impact of a higher-level power seizure. The first is the number of days since a power seizure at the higher level: coded 0 until a power seizure takes place and increasing by 1 for each day thereafter.\(^8\) We argue that a power seizure at the immediately higher level pressures cadres at lower levels to follow suit. We expect that these pressures are strongest immediately after the higher-level power seizure and wane over time. To test this we include in the equation both a main effect and a quadratic term for number of days squared.

The next model block introduces a variable that indicates local or horizontal influence processes. Power seizures may have been hastened by knowledge of similar acts in nearby administrative units of equal rank.

\(^8\) Data for prefecture power seizures are more complete than for cities and counties. The dates of their power seizures are known for 191 prefectures (with 1,669 cities and counties). For 46 prefectures (321 cities and counties) we know only the month. For the 46 missing dates, 43 are imputed with the mean dates of prefecture power seizures in a given month for the province, and three cases are imputed with the monthly mean for the entire sample. We assume that there were no prefectural power seizures for the remaining 30 prefectures (223 counties and cities).
For county-level units, this variable is coded as the percentage of county-level jurisdictions within the same prefecture that have experienced a power seizure; for prefecture-level cities, it is the percentage of other prefecture-level cities in the same province. The variable is coded 0 until the first power seizure occurs in the prefecture (or province), and the percentage increases by day up to a maximum of 100%. We do not have strong prior expectations about the impact of these horizontal influences; our theory emphasizes top-down processes within the political hierarchy.

In the last block of variables are two interaction terms designed to gauge a shift in diffusion processes after January 22. The first interacts the period with the number of days since a higher-level power seizure. The second interacts the period with the percentage of local jurisdictions that have experienced a prior power seizure. The first gauges vertical, top-down diffusion; the second gauges local, horizontal influences. We expect that the top-down processes are activated on January 22 and that they will override horizontal influences.

FINDINGS

Table 5 presents nested equations estimated as accelerated failure time (AFT) models. Unlike event-history models that employ proportional-hazard metrics, a positive coefficient indicates a lengthening of the time to an event, while a negative coefficient indicates a shortening of the time to an event. The results conform closely to expectations derived from our theory. The nested models are designed in part to gauge which variables have the largest impact on model fit. Each successive model improves the fit to a statistically significant degree, but by far the largest increment in the Wald χ^2 statistic in models 2–5 is model 3, which adds indicators of top-down diffusion.

The individual coefficients conform closely to our expectations. More urban jurisdictions, which are higher in the bureaucratic hierarchy, experience power seizures earlier (models 2–5). The ratio of cadres to workers has no net effect in any of the models. This conforms to the idea that cadres responded to top-down pressure to seize power. Power seizures were not delayed or less likely to occur in cadre-dominant counties. The variable for distance has no effect once we account for the top-down diffusion pattern, which indicates that the pressures from above to which cadres responded were unaffected by distance from the next higher level of administration.

The crucial test of top-down diffusion is provided by coefficients that gauge the impact of higher-level power seizures. The dummy variable indicating

9 The AFT models are expressed as $\ln(T) = X\beta + \epsilon$, such that a positive coefficient indicates a delaying effect, that is, additional days before an event occurs.
<table>
<thead>
<tr>
<th>Jurisdiction feature:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage urban</td>
<td>-.43***</td>
<td>-.59***</td>
<td>-.56***</td>
<td>-.50***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.09)</td>
<td>(.14)</td>
<td>(.12)</td>
<td>(.13)</td>
<td></td>
</tr>
<tr>
<td>Cadres/workers and staff</td>
<td>.02</td>
<td>.01</td>
<td>.01</td>
<td>.01e-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.03)</td>
<td>(.03)</td>
<td>(.03)</td>
<td>(.03)</td>
<td></td>
</tr>
<tr>
<td>Distance from higher level (log km)</td>
<td>.04**</td>
<td>.03</td>
<td>.02</td>
<td>.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.02)</td>
<td>(.02)</td>
<td>(.02)</td>
<td></td>
</tr>
<tr>
<td>Hierarchical diffusion:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late (after January 22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days since higher-level power seizure</td>
<td>.03***</td>
<td>.03***</td>
<td>-.04</td>
<td>-.05e-3***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.02)</td>
<td>(.00)</td>
<td></td>
</tr>
<tr>
<td>Days since higher-level power seizure squared</td>
<td>-.07e-3***</td>
<td>-.05e-3***</td>
<td>-.05e-3***</td>
<td>.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.00)</td>
<td></td>
</tr>
<tr>
<td>Local contagion effect:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior local power seizures</td>
<td></td>
<td></td>
<td>.50***</td>
<td>-.536***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.12)</td>
<td>(1.04)</td>
<td></td>
</tr>
<tr>
<td>Period Interaction:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days since power seizure above × late</td>
<td></td>
<td></td>
<td></td>
<td>.07**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.02)</td>
<td></td>
</tr>
<tr>
<td>Prior local power seizures × late</td>
<td></td>
<td></td>
<td>6.11***</td>
<td>(1.09)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provincial fixed effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>4.08***</td>
<td>4.01***</td>
<td>4.65***</td>
<td>4.63***</td>
<td>4.86***</td>
</tr>
<tr>
<td></td>
<td>(.09)</td>
<td>(.11)</td>
<td>(.17)</td>
<td>(.16)</td>
<td>(.19)</td>
</tr>
<tr>
<td>Wald χ^2</td>
<td>211.37***</td>
<td>56.18***</td>
<td>807.51***</td>
<td>18.37***</td>
<td>37.13***</td>
</tr>
<tr>
<td>$\ln(\gamma)$</td>
<td>-.64***</td>
<td>-.65***</td>
<td>-.98***</td>
<td>-1.04***</td>
<td>-0.98***</td>
</tr>
<tr>
<td></td>
<td>(.04)</td>
<td>(.04)</td>
<td>(.05)</td>
<td>(.05)</td>
<td>(.06)</td>
</tr>
</tbody>
</table>

NOTE.—The Wald χ^2 statistic in col. 1 represents model fit improvement compared to the null model with intercept only; the Wald χ^2 statistics in cols. 2–5 represent improvement of fit compared to the model in the previous column. Robust SEs are in parentheses. $N = 198,825$.

* $P < .05$ (two-tailed test).
** $P < .01$.
*** $P < .001$.

This content downloaded from 171.067.216.023 on February 26, 2017 01:11:13 AM
the period beginning January 22 is large and negative across models 3–5, which is not surprising, given the rapid spread of power seizures after that day. The coefficient for the number of days since a higher-level power seizure is positive in models 3 and 4, which means that the risk of a power seizure is highest shortly after a power seizure at the jurisdiction above and declines with the number of days thereafter. The quadratic term for this variable is negative, which means that the effect of days since a higher-level power seizure eventually disappears. The estimated duration to power seizure is 35 days one day after a power seizure at the immediately higher level, and 41 days one week after.

Model 4 adds the measure of local peer effects—the percentage of local jurisdictions that have experienced a power seizure. The coefficient is positive, which means that the risk of a power seizure falls as the percentage of prior power seizures within the prefecture rises. This is not what a local contagion model would predict—that prior local power seizures create pressures on peer units to imitate relevant others. This suggests that rapid top-down diffusion may have overwhelmed whatever peer pressures may have operated.

Model 5 adds interaction terms with the time period for both the top-down and horizontal diffusion measures and shows a sharp contrast before and after January 22. Interestingly, the coefficient for the number of days since a higher-level power seizure, which now signifies its impact before January 22, is no longer statistically significant (while the sign of the coefficient has reversed and is now negative). This means that before January 22 the top-down pattern of diffusion had yet to take hold. The coefficient for the interaction term, which indicates the impact of a higher-level power seizure January 22 and after, shows a large accelerating effect (i.e., as the number of days since a higher-level power seizure rises, the expected time to the event increases). The period interaction effect is displayed in figure 4. For the period beginning January 22 the estimated time to failure is lowest immediately after a higher-level power seizure and increases steadily thereafter, roughly doubling after another 21 days. Before January 22, by contrast, there is no statistically significant effect, and the slope of the line is slightly negative. The coefficient for the interaction term is two to three times larger than the estimates for this variable in models 3 and 4, which averages effects across both time periods. The top-down pattern was evidently activated on January 22.

Note also that the coefficient for percentage of prior local power seizures changes sign and now has an accelerating effect in the period before Janu-

10 The estimated effect disappears after roughly eight months. This is calculated by taking the derivative of our model equation for days since higher-level power seizure, which gives $0.033 - 0.00014 \times$ power seizure above based on model 3 of table 5, which equals 236 days.
ary 22, while the interaction term indicates an even larger delaying effect in the later period. Each percentage increase in prior local power seizures decreases the duration to power seizure by 5% before January 22 but increases the duration by 1% after January 22. In other words, peer influences appear to be strong before January 22, but afterward their impact is overwhelmed by top-down processes. This confirms our impressions from the visual representation of the process in figure 1.

In sum, the results are highly consistent with the argument that a top-down cascade of power seizures, driven forward by cadres in lower-level jurisdictions, was touched off by the January 22 directive. The diffusion accelerated and shifted from horizontal to vertical after that date and conformed to a top-down process that was unaffected by either the number of cadres relative to workers or a jurisdiction’s geographic distance from higher levels in the hierarchy. A series of robustness checks (not shown) indicate that the results are not affected by missing or extreme values for variables or by the choice of model.\footnote{The results are unaffected by the exclusion of extreme values for distance, urbanization, and the cadre-worker ratio. The only variable for which there are significant numbers of missing values is the cadre/worker ratio (216). A model that includes a dummy variable for those missing cases does not have a statistically significant coefficient (results available on request). Appendix table A1 shows that virtually the same results are obtained with a variety of different event-history estimation methods.}

\footnote{The results are unaffected by the exclusion of extreme values for distance, urbanization, and the cadre-worker ratio. The only variable for which there are significant numbers of missing values is the cadre/worker ratio (216). A model that includes a dummy variable for those missing cases does not have a statistically significant coefficient (results available on request). Appendix table A1 shows that virtually the same results are obtained with a variety of different event-history estimation methods.}
CONCLUSION

We have introduced several new dimensions to the analysis of rebellion and revolution. The first is a dynamic perspective on the resilience of centralized dictatorships. We have analyzed these regimes as authoritarian hierarchies with powerful mechanisms to monitor and enforce internal discipline. Because these closed hierarchies made high demands for loyalty and placed agents under threat of severe sanctions, officials were highly sensitive to signals from higher levels, and they reacted in order to safeguard their positions. By analyzing the behavior of cadres in a period of insecurity and threat, we have applied to the state’s agents the kind of analysis usually reserved for popular challenges. This contrasts with state-centered theories that leave these short-run processes unspecified and treat them as a function of prior weaknesses in state structures. Paradoxically, the centralization that reinforced the stability of these states accelerated defections by the state’s agents under conditions of uncertainty and threat.

The crucial difference between our explanation and prior state-centered theories is that there are no prior structural weaknesses that make the state vulnerable to collapse. The rebellion represented a rapid shift from disciplined obedience to active opposition by large percentages of the state’s cadres. While there were antagonisms and rivalries within the bureaucracy that predated this episode, the internal rebellion achieved critical mass only after the leaders’ previously loyal defenders turned on them and formed rebel groups. The rebellion gained force after an October directive identified local leaders as suspects in a bourgeois reactionary line, forcing their active defenders to reevaluate their stances. In this sense, the crucial motivations for the cadre rebellions formed endogenously in reaction to events. Cadres did not defend their superiors to the end—they turned on them in large numbers.

This stance departs from the common assumption that the motivations for collective action exist before the conflicts of interest. Theories about political mobilization commonly treat the formation of interests as exogenous, and the analysis focuses on processes of mobilization that permit shared interests to find organized expression (Walder 2009b). This assumption misleads us when the interests that motivate collective action are formed during the course of sustained episodes of conflict (McAdam, Tarrow, and Tilly 2001; Walder 2006).

The way that the shifting choices of individual cadres eventually formed an internal rebellion is reminiscent of threshold and critical mass theories of collective action, of which theories of preference falsification and information cascades are recent examples (Kuran 1989, 1991; Lohmann 1994). But there is a crucial difference: these theories assume shared interests that are exogenously given and relatively stable. The dynamic element is the propensity of individuals to contribute to the achievement of group ends or to act on
previously concealed political preferences. In our analysis the dynamic element is the shift in the orientation of cadres from loyal defenders of their superiors to active opponents. This involves the formation of political preferences (to defend or overthrow their superiors), not shifts in the propensity to act on stable preferences. What changes are the political ends cadres sought, not decisions to act in their pursuit. In this case, the actions of individual bureaucrats, designed to ensure that they stayed on the right side of an escalating purge campaign, collectively destroyed the structures to which their group’s interests were inextricably tied.

The historical specifics of this case are highly unusual, but there are clear analogs in the rapidly unfolding crises of other state socialist regimes. The Polish Solidarity movement of 1980–81 touched off a pro-reform insurgency within the Polish United Workers Party that disabled its capacity for repression and facilitated the expansion of the popular movement to the point where the regime had to be restructured under martial law (Bloom 2014). In China in 1989, open divisions in the national leadership over how to respond to student protesters—dialogue or repression—generated expressions of support for dialogue by many within the state apparatus, most importantly in the state-controlled mass media. This greatly magnified the scale of popular protest and stimulated effective popular resistance to the first attempt to impose martial law, leading eventually to a more brutally effective second attempt (Walder 1989, 1998; Zhao 2001). In the Soviet Union that same year, Gorbachev changed the rules of the political game in an effort to overcome bureaucratic resistance to reform. After he introduced competitive elections for regional assemblies, local officials, in efforts to appeal to electorates, shifted from stances as entrenched opponents of reform and political liberalization into proponents of regional autonomy and even ethnic nationalism. The trend spread to officials in the Russian republic and soon led to the unexpected dismemberment of the Soviet Union (Gill 1994; Brown 1996; Beissinger 2002). In all three cases the state’s agents responded to shifting circumstances in ways that simultaneously magnified the scale and impact of popular protest and undermined the discipline and cohesion of the state. Without close attention to the internal dynamics of regimes—treating state officials themselves as crucial political actors—it is difficult to explain such outcomes. Future upheavals might be less surprising, and less difficult to explain retrospectively, if these internal processes are built into theories of rebellion and revolution.

APPENDIX

The tests that we performed in deciding to employ the log-logistic model are as follows. We first use a generalized gamma model to adjudicate among several parametric models. The generalized gamma model is highly flexible
and allows for various shapes depending on the values of κ and σ. Flexibility of this model is a desirable property given that it nests several parametric models as special cases: it is equivalent to the Weibull model when $\kappa = 1$, the exponential when $\kappa = \sigma = 1$, and the log normal when $\kappa = 0$. This means that we can test the values of κ and σ to decide whether to reject a distribution assumption for the data. We start by estimating a generalized gamma model, using the same covariates as in the full model of table 5 (table A1, col. 2). We use Wald tests to evaluate hypotheses regarding the values of κ and σ. The Wald tests suggest that the hypotheses regarding $\kappa = 1$ ($\text{Wald } \chi^2 = 36.84, df = 1, P < .001$), $\kappa = \sigma = 1$ ($\text{Wald } \chi^2 = 37.09, df = 2, P < .001$), and $\kappa = 0$ ($\text{Wald } \chi^2 = 7.54, df = 1, P < .01$) should all be rejected, such that the distribution assumptions of Weibull, exponential, and log normal are inappropriate. It is expected, given that our hazard rate has a nonmonotonic shape (fig. 3). The parametric models that assume a monotonic or constant hazard function, such as exponential and Weibull, are hence inappropriate. The test results leave us with the options of generalized gamma and two other nonnested models, Gompertz and log-logistic regressions.

We use the Akaike's information criterion (AIC) statistic to adjudicate between the three nonnested models. A general rule of thumb is that a better-fitting model to the data provides a smaller AIC statistic. The log-logistic regression has the smallest AIC statistic overall, suggesting that it provides the best model fit (col. 1 of table A1). This is further corroborated when we compare the estimated hazard function from each parametric model (fig. A1), as the curve from the log-logistic regression conforms most closely to the hazard function in nonparametric analysis.

In addition, we compare the log-logistic regression to the Cox semiparametric model (col. 7 of table A1). The Cox model proves to be inappropriate for our data, as the proportional hazard assumption is violated by some of the variables related to regional features, such as percentage urban, cadre-worker ratio, and provincial fixed effects (global test: $\chi^2 = 467.98, df = 33, P < .001$). In other words, the effects of our covariates are not the same across regions, which is understandable given the diffusion patterns and timing difference among jurisdictions. On this basis we conclude that the log-logistic model provides the best fit for the data and is an appropriate modeling strategy for our analysis.
TABLE A1
Comparison of Parametric and Semiparametric Models

<table>
<thead>
<tr>
<th>Jurisdiction feature:</th>
<th>Log Logistic (1)</th>
<th>Gamma (2)</th>
<th>Exponential (3)</th>
<th>Weibull (4)</th>
<th>Log Normal (5)</th>
<th>Gompertz (6)</th>
<th>Cox (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage urban</td>
<td>-5.00***</td>
<td>-8.80***</td>
<td>-10.01***</td>
<td>-8.60***</td>
<td>-7.70***</td>
<td>0.9900***</td>
<td>0.9500***</td>
</tr>
<tr>
<td></td>
<td>(.13)</td>
<td>(.18)</td>
<td>(.18)</td>
<td>(.16)</td>
<td>(.17)</td>
<td>(.17)</td>
<td>(.15)</td>
</tr>
<tr>
<td>Cadres/workers and staff</td>
<td>0.00</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(.03)</td>
<td>(.04)</td>
<td>(.04)</td>
<td>(.03)</td>
<td>(.04)</td>
<td>(.04)</td>
<td>(.04)</td>
</tr>
<tr>
<td>Distance from higher level (log km)</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>-0.03</td>
<td>-0.05**</td>
</tr>
<tr>
<td></td>
<td>(.02)</td>
<td>(.02)</td>
<td>(.02)</td>
<td>(.02)</td>
<td>(.02)</td>
<td>(.02)</td>
<td>(.02)</td>
</tr>
<tr>
<td>Hierarchical diffusion: Late (after January 22)</td>
<td>-1.7100***</td>
<td>-2.6000***</td>
<td>-3.7700***</td>
<td>-2.9900***</td>
<td>-2.4300***</td>
<td>3.9000***</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>(.20)</td>
<td>(.40)</td>
<td>(.10)</td>
<td>(.35)</td>
<td>(.46)</td>
<td>(.12)</td>
<td>(.00)</td>
</tr>
<tr>
<td>Days since higher-level power seizure</td>
<td>-0.04</td>
<td>-0.07*</td>
<td>-0.06</td>
<td>-0.04</td>
<td>-0.06*</td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(.02)</td>
<td>(.03)</td>
<td>(.06)</td>
<td>(.05)</td>
<td>(.03)</td>
<td>(.06)</td>
<td>(.04)</td>
</tr>
<tr>
<td>Days since higher-level power seizure squared</td>
<td>-0.0000***</td>
<td>-0.0000***</td>
<td>-0.0000***</td>
<td>-0.0000***</td>
<td>-0.0000***</td>
<td>0.0000***</td>
<td>-0.00**</td>
</tr>
<tr>
<td></td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.00)</td>
</tr>
<tr>
<td>Local contagion effect: Prior local power seizures</td>
<td>-5.3600***</td>
<td>-4.5300***</td>
<td>-5.4700***</td>
<td>-4.3400***</td>
<td>-4.9600***</td>
<td>5.6400***</td>
<td>3.2700***</td>
</tr>
<tr>
<td></td>
<td>(1.04)</td>
<td>(1.01)</td>
<td>(.67)</td>
<td>(.74)</td>
<td>(1.45)</td>
<td>(.67)</td>
<td>(.62)</td>
</tr>
</tbody>
</table>
TABLE A1 (CONTINUED)

<table>
<thead>
<tr>
<th></th>
<th>Log Logistic (1)</th>
<th>Gamma (2)</th>
<th>Exponential (3)</th>
<th>Weibull (4)</th>
<th>Log Normal (5)</th>
<th>Gompertz (6)</th>
<th>Cox (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period Interaction:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days since power seizure above × late</td>
<td>.07** (.02)</td>
<td>.10** (.03)</td>
<td>.09 (.06)</td>
<td>.07 (.05)</td>
<td>.09** (.03)</td>
<td>−.10 (.06)</td>
<td>−.02 (.04)</td>
</tr>
<tr>
<td>Prior local power seizures × late</td>
<td>6.11*** (1.09)</td>
<td>5.35*** (.05)</td>
<td>6.28*** (.68)</td>
<td>5.09*** (.77)</td>
<td>5.80*** (.52)</td>
<td>−6.34*** (.68)</td>
<td>−3.52*** (.64)</td>
</tr>
<tr>
<td>Provincial fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Constant</td>
<td>4.86*** (.19)</td>
<td>5.56*** (.32)</td>
<td>6.78*** (.19)</td>
<td>6.26*** (.29)</td>
<td>5.24*** (.28)</td>
<td>−6.61*** (.18)</td>
<td></td>
</tr>
<tr>
<td>ln(γ)</td>
<td>−.98*** (.06)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(σ)</td>
<td>−.17 (.09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>.31** (.11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(ρ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.18* (.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−.01*** (.00)</td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>2,480.52</td>
<td>2,487.14</td>
<td>2,561.55</td>
<td>2,557.90</td>
<td>2,503.60</td>
<td>2,548.00</td>
<td>21,869.88</td>
</tr>
</tbody>
</table>

NOTE.—Coefficients for all models apart from Gompertz and Cox are presented in the AFT format. Robust SEs are in parentheses. N = 198,825.

* P < .05 (two-tailed test).
** P < .01.
*** P < .001.
Fig. A1.—Postestimation comparison of hazard functions.
FIG. A1. (Continued)

Gompertz regression

Lognormal regression
REFERENCES

American Journal of Sociology

Collapse in an Authoritarian Regime

American Journal of Sociology

